Folding of a single-chain, information-rich polypeptoid sequence into a highly ordered nanosheet.

نویسندگان

  • Romas Kudirka
  • Helen Tran
  • Babak Sanii
  • Ki Tae Nam
  • Philip H Choi
  • Neeraja Venkateswaran
  • Ritchie Chen
  • Stephen Whitelam
  • Ronald N Zuckermann
چکیده

The design and synthesis of protein-like polymers is a fundamental challenge in materials science. A means to achieve this goal is to create synthetic polymers of defined sequence where all relevant folding information is incorporated into a single polymer strand. We present here the aqueous self-assembly of peptoid polymers (N-substituted glycines) into ultrathin, two-dimensional highly ordered nanosheets, where all folding information is encoded into a single chain. The sequence designs enforce a two-fold amphiphilic periodicity. Two sequences were considered: one with charged residues alternately positive and negative (alternating patterning), and one with charges segregated in positive and negative halves of the molecule (block patterning). Sheets form between pH 5 and 10 with the optimal conditions being pH 6 for the alternating sequence and pH 8 for the block sequence. Once assembled, the nanosheets remain stable between pH 6 and 10 with observed degradation beginning to occur below pH 6. The alternating charge nanosheets remain stable up to concentrations of 20% acetonitrile, whereas the block pattern displayed greater robustness remaining stable up to 30% acetonitrile. These observations are consistent with expectations based on considerations of the molecules' electrostatic interactions. This study represents an important step in the construction of abiotic materials founded on biological informatic and folding principles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solid-phase Submonomer Synthesis of Peptoid Polymers and their Self-Assembly into Highly-Ordered Nanosheets

Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity...

متن کامل

Protein Mimicry with Bioinspired Peptoid Polymers

Despite the fact that proteins and bulk polymers share a common linear polymeric architecture, the fields of Structural Biology and Polymer Science are presently separated by a great divide [1]. In fact, there are relatively few non-natural polymer systems that include even the most fundamental of biopolymer attributes: chemical diversity and sequence specificity. The chemical information encod...

متن کامل

Molecular Typing of Mycobacterium Tuberculosis Isolated from Iranian Patients Using Highly Abundant Polymorphic GC-Rich-Repetitive Sequence

Background: Tuberculosis (TB) with more than 10 million new cases per year and one of the top 10 causes of death worldwide, is still one of the most important global health problems. Also, multi drug-resistant tuberculosis (MDR) is a serious danger to public health. Understanding of the epidemiological pattern of mycobacterium tuberculosis (MTB), Estimates of recent transmission and recurrence ...

متن کامل

Scattering Study of Conductive-Dielectric Nano/Micro-Grained Single Crystals Based on Poly(ethylene glycol), Poly(3-hexyl thiophene) and Polyaniline

Two types of rod-coil block copolymers including poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-b-PEG) and PEG-block-polyaniline (PANI) were synthesized using Grignard metathesis polymerization, Suzuki coupling, and interfacial polymerization. Afterward, two types of single crystals were grown by self-seeding methodology to investigate the coily and rod blocks in grafted brushes and o...

متن کامل

Assembly and molecular order of two-dimensional peptoid nanosheets through the oil-water interface.

Peptoid nanosheets are a recently discovered class of 2D nanomaterial that form from the self-assembly of a sequence-specific peptoid polymer at an air-water interface. Nanosheet formation occurs first through the assembly of a peptoid monolayer and subsequent compression into a bilayer structure. These bilayer materials span hundreds of micrometers in lateral dimensions and have the potential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biopolymers

دوره 96 5  شماره 

صفحات  -

تاریخ انتشار 2011